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Abstract Adaptive compression for images transmission
in resource-constrained multi-hop wireless network appli-
cations is considered. In this strategy, development of an
energy efficient image compression scheme is proposed as
a means to overcome the computation and/or energy limi-
tation of individual nodes. It has the additional benefit of
extending the “life” of individual node by saving its energy
power. Two methods for energy efficient image compression
are proposed and investigated with respect to energy con-
sumption and image quality. Simulation results show that
the proposed scheme prolongs the system lifetime and min-
imizes the computation energy by reducing the number of
arithmetic operations and memory accesses.

Keywords Adaptive compression · Image transmission ·
Energy conservation · Wireless sensor networks

1 Introduction

Recently wireless sensor network (WSN) has become one of
the basic networking technologies since it can be deployed
without communication infrastructuresMohamedEl-Semary
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and Mostafa Abdel-Azim (2013). WSNs are being deployed
in a wide range of potential applications scenarios, includ-
ing forest monitoring, military surveillance, object tracking,
traffic control, remote medical systems, and industrial appli-
cations Flammini et al. (2009). Such networks are based on
small sensor nodes and a sink as depicted in Fig. 1. A typical
sensor node consists of four main components: (i) a sensing
unit including one or more sensors and an analog-to-digital
converters for data acquisition; (ii) a data processor including
a micro-controller and a memory for local data processing;
(iii) a radio sub-system (RF unit) in order to transmit the data
over a wireless channel to a designated sink; and (iv) a power
source. Depending on the specific application, sensor nodes
may also include additional components which are optional
such as a location finding system to determine their position,
a mobilizer to change their location or configuration.

For wireless multimedia network, sensor nodes are
equipped with multimedia devices such as cameras. These
devices are smaller, and offer more performances in terms
of speed and image quality. Thus such network will have
the capability to transmit multimedia data. The most impor-
tant requirements of image transmission inWSNs are: Image
sensing, allocated memory and image processing.

Despite the advantages of wireless sensor network appli-
cations, the wireless sensor nodes are limited energy, storage
capacity, computation capability, and communication range.
Given the stringent resource, WSNs present strong limits for
the image transfer because the image based applications rep-
resent visual data requires a large amount of information,
which in turn leads to high data rate. Therefore, approaches
to optimize data transmission and increase network lifetime
are useful.

To address the abovementioned concerns, the image trans-
mission optimization through WSNs is mainly done by the
implementation of a distributed image compression embed-
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Fig. 1 Sensor network architecture

ded algorithm in order to reduce the number of transmitted
bits, thus reducing the energy consumption. This technique is
based on the fact that an individual node does not have a suf-
ficient computational power to completely compress a large
volume of data to meet the application requirements; this is
not possible unless the node distributes the computational
task among other nodes. In this case, a distributed method to
share the processing task is necessary. In this paper, we pro-
pose an alternative image transmission approach in WSNs,
based on JPEG2000 image compression standard usingMat-
lab and C from Jasper. JPEG2000 can provide various new
additional functions such as high resolutions image com-
pression, progressive transmission and scalable image cod-
ing. This approach is based on discrete wavelet transform
(DWT) and embedded block coding with optimized trunca-
tion (EBCOT) which uses a better order of transmission.

This paper is organized as follows: In the next two sec-
tions we summarize related work and describes transmis-

sion scheme in WSNs. Results and discussions are shown in
Sect. 4. Finally, Sect. 5 concludes this work.

2 Related work

In typical wireless sensor network applications, the energy
consumption is the most critical factor because sensor nodes
have a very limited energy supply and are expected to operate
independently over a long time-period Liu et al. (2009). For
this reason, image transfer presents major challenge which
raises issues related to its representation, its storage and its
transmission. Therefore, extensive research has focused on
how to minimize the energy consumption and prolong the
network lifetime Park et al. (2007).

In this case, some research related to wireless sensor is
based on energy-efficient routing protocol to reduce power
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consumption of a wireless sensors network during image
transmission. InHeinzelman et al. (2000), a low energy adap-
tive clustering hierarchy (LEACH) is considered. Using the
purpose, LEACH is able to incorporate data fusion into the
routing protocol to reduce the transmitted information quan-
tity being transmitted over the wireless channel. This tech-
nique is based on single-hop routing, where the cluster head
transmits directly the data to the destination. Due to the lim-
ited transmission range of sensor nodes, the adopted protocol
appears infeasible in large scale sensor networks. To solve
this problem, a multi-hop communication model is proposed
in Heinzelman et al. (1999), Jeon et al. (2009). In this model,
sensor protocols for information via negotiation (SPIN) effi-
ciently disseminates information in a multi-hop manner is
investigated. In the same axis, a routing protocol through a
backbone is considered in order to reduce the communica-
tion overhead for route discovery and the number of active
nodes for WSNs. The main idea of the purpose is to partition
the network into different clusters. Each cluster is composed
of a cluster head witch linked to form the connected back-
bone and many cluster member nodes Muthuramalingam et
al. (2008).

On the other hand, some related issues concern the image
transmission over WSNs with an adaptive compression and
transmission. In Ferrigno et al. (2005) a platform to eval-
uate the performance of different traditional algorithms for
the image compression in a single sensor node is purposed
analyzing five algorithms: joint photographic experts group
(JPEG), spread spectrum (SS), discrete cosine transform
(DCT), set partitioning in hierarchical trees (SPIHT) and
JPEG2000. Research shows that SS is the unique algo-
rithm which presents energy savings with respect to the no-
compression case, allowing a power reduction of about 29%.
The mechanism proposed in Wu and Chen (2005) uses a
scheme based on an SPIHT coding of data blocks gener-
ated from parent–child relationships of wavelet coefficients.
This parent–child relationship is performed in order to rein-
force SPIHT fragilities in bit error transmission cases. The
adopted approach inWu andAbouzeid (2004) has introduced
a power aware technique that incorporates the local compres-
sion JPEG2000 standard. They formulated the image trans-
mission problem as an optimization problem and proposed a
heuristic algorithm called the minimize total energy (MTE).
In Wagner et al. (2003), a distributed image compression for
images captured by sensor nodes having overlapping fields
of view is considered. The approach uses a technique sim-
ilar to the stereo-image compression to identify an overlap
in the images of neighboring sensor nodes Boulgouris and
Strintzis (2002). Distributed image compression using the
JPEG2000 standard is proposed inWu and Abouzeid (2005).
Its main idea is based on the distribution of the wavelet
transform processing workload between various nodes. Two
methods for data exchange have been proposed: The paral-

lel wavelets transform method and the tiling method. In Lu
et al. (2008), the distributed implementation scheme of the
lapped biorthogonal transform (LBT) based on a clustering
architecture overcomes the computation and energy limita-
tion of individual nodes by sharing the tasks processing. This
approach is intended to extend the lifetime of the wireless
sensor network under a specific image quality requirement.

In the same context, we propose a technique to reduce
power consumption of wireless sensor network applica-
tions during image compression and transmission using the
JPEG2000 standard. The purpose is to speed up the compres-
sion, optimize the network and to save as much as possible
the “life” of individual node by saving its energy power.

3 Transmission scheme in WSNs

Nowadays, more andmoremultimedia applications integrate
wireless transmission functionalities. Due to their ease of
deployment, WSNs are being deployed in very diverse mul-
timedia application scenarios. In the context, the main task
of a sensor node is to sense the environment and report what
happens. Data collected by sensor nodes are usually routed
back to a sink node by a multiple-hop communication. Each
sensor node has two roles, data gathering and data relaying.
In order to make image transmissions possible via energy
preservation and allocated memory based heuristic. We use
a scenario to request image quality-of-service (QoS) para-
meters as depicted in Fig. 2.

In this scenario a request specifying the necessary con-
straints of QoSs is required to initiate image transmission
scheme with the operation parameters such as: peak signal-
to-noise ratio (PSNR), compression ratio (CR), decompo-
sition level…. When sending an image request, the mon-
itor specifies the desired parameters. The request is initi-
ated by the sink and then conveyed through the intermedi-
ate nodes using a multi-hop communication. Each sensor
node involved in the transmission request process saves in
its memory all the requested parameters. Theses parameters
will be checked during the compression process to determine
the number of hops needed from source to sink. This tech-
nique makes the number of hops depending on the routing
algorithm and the distance from source to sink as well. The
scenario is based on image compressing system which sup-
ports the rich set of features that are not available in other
standards, such as excellent low bit-rate performance, both
lossy and lossless encoding in one algorithm, random code
stream access, precise single-pass rate control, region-of-
interest coding and improved error resiliency. In this inves-
tigation, the communication environment is assumed to be
contention-free and error-free. In this approach we focus
on the problem of efficiently compressing and transmitting
images in a resource-constrainedmulti-hopwireless.Wepro-
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Fig. 2 Scenario based on the
image request
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pose a distributed image compression scheme where nodes
compress an image while forwarding it to the destination
subject to a specific image quality requirement and reduce
energy consumption of sensor nodes to prolong lifetime of
finite capacity batteries.

3.1 Image processing in WSNs

Due to limited battery lifetime at each sensor, it is obvious
that reducing transmitted data will increase energy efficiency
and network lifetime. However, the most evident solution is
the image compression. The purpose of image compression
is to reduce the number of bits required in representing image
by removing the spatial and spectral redundancies as much
as possible. In this paper, the proposed image transmission
scheme is based on wavelet image transform. The structure
of a transform coder is illustrated in Fig. 3.

The main objectives achieved by this image compress-
ing system are: progressive transmission, progressive quality,
reduced allocated memory, minimized energy consumption,
and optimized network lifetime.

More recently, the DWT has gained an efficient tool
for signal processing in general and in image compression
research in particular. The DWT carries out an analysis of

a signal with localizations in both time and frequency. This
is actually a method of multi-resolution which reduces the
amount of processed data and thereforewould facilitate a pro-
gressive image’s transmission. Thus, the wavelet transform
is more robust under transmission and decoding errors, and
also facilitates progressive transmission of images. Theoret-
ically, DWT is a 2 dimensional separable filtering operation
across rows and columns of input image. This is achieved
by first applying the low-pass filter (LPF) and a high-pass
filter (HPF) to the lines of samples, row by- row, and then
re-filtering the output to the columns by the same filters. As a
result, the image is divided into 4 sub bands: low-low (LL1),
low- high-low (HL1), high (LH1) and high-high (HH1) as
shown in Fig. 4. The high-pass sub-band represents resid-
ual information of the original image, needed for the perfect
reconstruction of the original set from the low resolution
version. Specifically, the LL1 sub-band can be transformed
again to form LL2,HL2,LH2, and HH2 sub-bands, produc-
ing a two-level wavelet transform… and so on.

After the DWT, all the sub-bands are quantized to reduce
the precision of the sub-bands and contribute in achiev-
ing compression. The quantized DWT coefficients are con-
verted into sign-magnitude represented prior to entropy cod-
ing. In the embedded block coding method which is used

Fig. 3 Functional block
diagram of JPEG 2000 encoder
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Fig. 4 Illustration of wavelet spectral decomposition. a The 1D Wavelet Transform. b The first decomposition level. c The second decomposition
level. d The third decomposition level

in JPEG2000 standard, each sub-band (corresponding to
LLi,LHi,HLi and HHi component at each wavelet decom-
position level) is divided into small blocks called ‘code
blocks’. And then each code block is coded independently
from the other ones thus producing an elementary embed-
ded bit-stream. During the coding phase, each code-block
is decomposed into a number of bit-planes: One sign bit-
plane and several magnitude bit-planes. The entropy coder
for JPEG2000 uses embedded block coding with optimal
truncation (EBCOT). EBCOT is divided into two coding.

3.2 System model

We consider a multi-hop wireless sensor network that wire-
lessly interconnected sensor nodes able to retrieve and han-
dle a still image. Their operation can be considered as the
convergence between the classical wireless sensor nodes and
distributed image sensors. After receiving an image request,
every image sensor generates a raw image and transmits it
to the sink. When sending an image request, the sink speci-
fies the desired image quality. In the request, the bit rate of a
compressed image (q), the wavelet decomposition level, the

PSNR, the quantization level (QL) and the CR are specified.
For this study, we have adopted the 9/7 wavelet transforms
implemented via lifting scheme (LS). This technique calcu-
lates the DWT using a spatial domain analysis, and consists
of a series of split, predict and update steps that modify,
or lift, one set of samples to be used in the next step as
shown in Fig. 5. The split step separates odd ((xo(k)) and
even ((xe(k)) samples: xe(k) = {x2k, k ∈ Z} , xo(k) =
{x2k+1, k ∈ Z}.

The predict step predicts values in the odd set, as follows:

P1 : x(2k+1)new = x(2k+1)old +a · (x(2k)le f t + x(2k)right ) (1)

where a is the predict step coefficient. The update step uses
the new wavelet coefficients in the odd set to update the even
set producing “smooth” or “scaling” coefficients:

U1 : x(2k)new = x(2k)old +b · (x(2k+1)le f t + x(2k+1)right ) (2)

where b is the update step coefficient.
The results, produced in the first stage, can be stored

immediately in the memory space containing the odd sam-
ples of the input data because these odd samples are not

Fig. 5 The architecture of 9/7
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used in later stages of computation. Similarly the results
produced in the second stage can be stored back to the
memory space allocated to the even samples of input data.
Continuing in the same way, the high-pass (P2 : Hk =
x ′
(2k+1)new +c ·(x((2k)new)le f t +x((2k)new)right )) and the low-
pass (U2 : Lk = x ′

(2k)new + d.(Hk−1 + Hk)) output samples
are stored into the registers where the odd (even) samples
of the input data were originally stored at the beginning of
the computation. As a result, no extra memory is required
at any stage. For each sample pixel, low-pass decomposition
requires 8 shifts (S) and 8 additions (A) instructions whereas
high-pass decomposition requires 2 shifts and 4 additions.
The energy needed for low-pass/high-pass decompositions
may be defined by the number of operations. This energy
called “computational load”. Therefore the low-pass decom-
position requires 8S + 8A units of computational load in a
unit pixel and 2S + 4A units for the high-passes. At a trans-
form level, each pixel is read and written twice. We estimate
that the “data-access load” is the number of read and write
operations. Assuming that the input image size is of M × N
pixels and that the image is decomposed into p resolution
level, then the 2D-DWT is iteratively applied p − 1 levels.
Since the image is divided into 4 sub-bands in each transform
level, the total computational energy for this process can be
computed as a sum of the computational load and data-access
load as follows:

EDWT (M, N , p) = MN (10S + 12A + 2Rmem

+ 2Wmem) ·
p−1∑

i=1

(
1

4

)i−1

= 4

3
MN (10S + 12A + 2Rmem

+ 2Wmem)
[
1 − 4−(p−1)

]
(3)

In this study, we have adopted the parameters which refer
to the characteristics of MICA2 motes, where, S, A, Rmem ,
and Wmem represent the energy consumption for shift, add,
read, and write basic 1-byte instructions, respectively Atmel
Corporation (2006).

The energy spent in entropy coding per bit is

EENT = δ. (4)

The value of the parameter of the computation energy
model (6) is estimated as follows. We have employed Joule-
Track Sinha and Chandrakasan (2001) to estimate the energy
consumption for an existing JPEG2000 coder Adams (2003).
From the experiment, the value of δ is estimated to be
20 × 10−9 J/bit.

To estimate the communication energy, the transceiver
energy dissipation model is used. The energy consumed in
reception per bit is

ERX = εe (5)

The energy consumed in transmission one bit is

ET X = εe + εad
α (6)

where, εe is the energy consumed by the circuit per bit, εa
is the energy dissipated per bit per m2, d is the distance
between a wireless transmitter and a receiver, and α is an
attenuation factor depending on the environment with typi-
cal values between 2 and 6. The parameter value for wireless
communication energy model (4) and (5) are the typical val-
ues εa = 100 × 10−12, εe = 50 × 10−9 as for example in
Heinzelman et al. (2000) and α is chosen 2.

To analyze the degradation of image quality, we shall use
the PSNR metric, which is defined (in decibels) as:

PSNR = 10 log10
(2q − 1)2

MSE
(7)

where q is the number of bits per pixel (bpp) of the raw image,
and MSE is the mean-square-error which defined by:

MSE = 1

MN

M−1∑

m=0

N−1∑

n=0

[
i(m, n) − î(m, n)

]2
(8)

where i(m, n) is the pixel values of the original image,
î(m, n) is the pixel values reconstructed image.

3.3 Distributed task of the image compression

The basic idea of the proposed distributed image compres-
sion is distributing the workload of task to several groups of
nodes along the path from the source to the sink. The key
issue in the design of distributed task of image compression
is data exchange. In this proposition, data is broadcasted to
all processors to speed up the execution timewhichmay opti-
mize network lifetime and increase the energy consumption.
We proposed two data exchange schemes based on distrib-
uted cluster- based compression and compare between them
with respect to image quality and energy consumption; (1)
Method 1 based on the standard LS 9/7 DWT; (2) Method 2
based on the elimination of insignificant wavelet coefficients.
In this study, the network is grouped into different clusters.
Each cluster is composed of one cluster head and many clus-
ter member nodes. The cluster head can process, select and
aggregate sensed data from cluster member nodes.

3.3.1 Method 1

In this method, we consider the data partitioning scheme
proposed using the LS 9/7 DWT. An example of distributed
cluster-based compression using four nodes in each cluster is
shown in Fig. 7. A routing algorithm is assumed to be in place
and nodes are self-organized into a two-tiered architecture
Krishnan and Starobinski (2006).
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When applying the scenario proposed in Sect. 4 and after
receiving a query from a source node s, the cluster head c1
selects a set of nodes n1i (i = 1… 4) in the cluster which will
take part in the distributed tasks then informs source node.
The source divides the original image into tile and transmits
them to n1i (n11, n12, n13 and n14). Those nodes run 1D-DWT
(horizontal decomposition) on their received data then send
the intermediate results to c2. After receiving the results, c2
distributes it to the set of nodes n2i (n21, n22, n23 and n24).
These nodes process data (vertical decomposition) and send
the results (Level 1 data in Fig. 5b) to the next cluster head
c3. The cluster head c3 chooses a part of the results (corre-
sponding to LL1 in Fig. 5b) and distributes it to the set of
nodes n3i. Those nodes run 1D wavelet transform algorithm
of LL1 sub-band then send the intermediate results to c4. The
remaining part of the image (HL1,LH1 and HH1 in Fig. 5b)
is coded and sent to the next cluster head c4. Without com-
bining process, the cluster head c4 forwards the results corre-
sponding to L2 and H2 sub-bands directly to the set of nodes
n4i (n41, n42, n43 and n44). These nodes send their processed
results (LL2,HL2,LH2 and HH2 in Fig. 5c) to c5 after
running a second 1D-DWT (vertical decomposition). The
remaining sub-bands (HL1,LH1 andHH1 in Fig. 5b) is coded
and sent also to the next cluster head c5. To be compatible
with experiment results and depending on the image quality
specified by the query (which is application-dependent), this
procedure may continue on c6 and its following nodes until
the final compressed image reaches the destination node. It
should be noted that, as shown in Fig. 6, after the DWT, all
the sub-bands are quantized by a single node (n5i). The other
nods are put awake. Since the quantization represents about
5.5 % of the total process time, In spite of resource con-
straints, an individual node has a sufficient power to realize
the quantization block. Given that the Tier-1 coding repre-
sents about 43% of the total process time, the tasks partition-

ing optimize the network lifetime. After receiving the results,
c6 divides quantized sub-bands into a number of smaller
code-blocks of equal size and send their processed results to
set of nodes n6i (n61, n62, n63 and n64). In these nodes each
code-block is entropy encoded independently to produce
compressed bit-streams.

3.3.2 Method 2

The basic idea of the proposed technique is avoiding the com-
putation of insignificant coefficients during the transform
step. This technique attempts to conserve energy by skipping
the least significant sub-band. Thus, the proposal reduces the
number of arithmetic operations and memory accesses. The
proposed technique is called “EHPF: Elimination High Pass
Filtering”. Figure 7 illustrates the distribution of high-pass
coefficients after applying tow levels wavelet transform to
the 256 × 256 image. We notice that the high-pass coeffi-
cients values are very small. Indeed, 75 % of the high pass
coefficients for level 1 are less than 5.

This explains that the LPF can compact the significant
coefficients in the LLi sub-band. Thus, the most of the image
energy is located in Li sub-band also during the horizon-
tal decomposition. Therefore, in the vertical direction only
the LPF is applied in each compression level resulting in a
minimum image quality loss. The sub-bands resulting from
the horizontal direction are further decomposed in the ver-
tical direction applying only the LPF, leading to LL1 and
HL1 sub-bands. The other high-pass sub-bands (LHi, and
HHi) are removed. After one transform level, the image is
then processed by applying the 2-D sub-band decomposi-
tion to the LLi sub-band while applying only the LPF in the
vertical direction. This process can be repeated up to any
level.

Fig. 6 Data exchange of distributed task for image compression in a multi-hop wireless network. Two levels of wavelet decomposition are used
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Fig. 7 Distribution of high-pass coefficients

Similar to method 1, after receiving a query from a source
node s, the cluster head c1 selects a set of nodes n1i (i = 1 …
4) in the cluster which will take part in the distributed tasks
then informs source node. The source divides the original
image into tile and transmits them to n1i (n11, n12, n13 and
n14). Those nodes run 1D-DWT (horizontal decomposition)
on their received data then send the intermediate results to
c2. The cluster head c2 sends the received data to the process-
ing nodes n2i (n21, n22, n23 and n24) to run 2-D DWT. In this
decomposition, both sub-bands (L1 and H1) resulting from
the horizontal direction are only fed into the LPF and not the
HPF in the column transform step. After running a second
1D-DWT (vertical decomposition), the set of nodes n2i send
their processed results (LL1 and HL1 in) to c3. The cluster
head c3 selects a part of LL1 sub-band and forwards it to
the set of nodes n3i (n31, n32, n33 and n34). Those nodes run
the 1D-DWT (horizontal decomposition) on their received
data then send the results individually to c4, The remaining
part of the image (HL1 sub-band) is coded and sent to the
next cluster head c4. Similar to method 1 implementation,
this procedure may repeat several times until the requested
compression level is satisfied. Then, the transformed coeffi-
cients are quantized by an individual node in order to reduce
the volume of encoded data. Following the quantization step,
an encoding module provides a sequence of binary symbols
similar to method 1.

3.4 Network density versus requested parameters

In the proposed distributed scheme, the requested parameters
may be obtained when reaching a same processing level,
depending on the wireless applications. In each cluster head,
data processing is made to select the next hop. In this case,
the respective cluster head compares calculated parameters
with those memorized in each node during the transmission
request process as explained in Sect. 4. Depending on the
result of the comparison:

(i) If the requested parameters are fulfilled, the cluster head
directly forwards the processed data to the next cluster
head without further processing, and then from cluster
head to the next cluster head until it reaches the sink.

(ii) If the requested parameters are not fulfilled yet, the clus-
ter headwill process data then forwards them to its cluster
member nodes for further data processing. This process
is repeated several times until the requested QoS is
satisfied.

(iii) If the sink asks for a very good QoS with high PSNR,
and we will not be able to get the required quality
needed by the sink, the respective cluster head sends
a message to the sink to inform that this application is
infeasible.

Then remains the question: How about the situations in case
the distance between the source and the sink is not large
enough? In this study, the last cluster member nodes on the
path to the sink may have to perform multiple operations on
the remaining data until the requested parameters is reached.
We call this the ‘last-cluster overload’. This may potentially
induce a fast depletion of the nodes located next to the sink.
In view of this, after processing data in the current cluster
head, the proposed state transition adopts the approach of
the compression data is described in Fig. 8.

For example, if the source is four hops away from the
sink while the required compression level is two, the relay-
ing nodes n4i will compute the remaining processing data.
Indeed, after running the vertical decomposition, the set of
nodes n4i send the results to c4. The cluster head c4 send
the processed data again to one of the processing nodes (n4i)
to realize the quantization block. These nodes process data
and send the results to the cluster head c4. After receiv-
ing the results, c4 divides quantized sub-bands into a num-
ber of smaller code-blocks of equal size and forwards their
processed results to set of nodes n4i. In these nodes each
code-block is entropy encoded independently to provide a
sequence of binary symbols.

For the set ofmember nodeswhich located next to the sink,
the data is in a more compressed form than those towards the
source; therefore, the energy cost of these nodes is smaller
than the energy cost of previous processing nodes on the
path. For the reason the ‘last-cluster overload’ will not have
a significant effect on the system lifetime.

4 Results and discussions

In this section, we analyze the functional influence of the
parameters initialized in the scenario proposed in QoSs
requirements. Then, we study the impact of some parameters
on the behavior of the distributed schemes to evaluate energy
performance of image transmission. However, the variation
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Fig. 8 Proposed transition state
of the data compression at an
intermediate cluster head
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Last hop =0; Requested
parameters = 0

Cn-1 Gn-1 Sink......

Last hop = 0; Requested parameters = 1
Last hop =1: Ci=Cn-1

Last hop =0: Ci ≠ Cn-1
Requested parameters = 1: Requested parameters are fulfiled

Cn

; |C|=n

Requested parameters = 0: Requested parameters are not fulfiled

Last hop=1; Requested parameters=1

Last hop=1;
Requested

parameters=0

GiCi

Fig. 9 a Original image
component. b Output image
after the first decomposition
level. c Output image after the
second decomposition level. d
Output image after the third
decomposition level

of these parameters to ensure a multi-level processing should
affect other interesting factors which may influence the com-
munication process quality such as:

• Execution time on the microcontroller (sensor node)
• PSNR

4.1 Impact of the DWT on computational energy

In this section, we report on computation energy consumed
and generated by each of the two proposed techniques as
described in the previous section. To implement the method
1, the energy localization by successive decomposition lev-

els will allow decreasing the amount of information to be
transmitted to the destination. The computed quantity is
divided by 4 at every decomposition level as shown in Fig. 9.
This is a main objective to be achieved, since the energy
consumption in sensor nodes is proportional to the infor-
mation quantity being transmitted over the wireless chan-
nel.

As a result, reducing the quantity of transmitted data will
extend the topological lifetime of WSNs. From the experi-
ment, a Lena image of 256×256 pixels is used as a test image.
We first apply the decomposition in the horizontal direction.
Since all even-positioned image pixels are decomposed into
the low-pass coefficients and odd positioned image pixels are
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decomposed into the high-pass coefficients, the total compu-
tational energy involved in horizontal decomposition is given
as.

EH (M, N ) = 1

2
MN (10S + 12A + 2Rmem + 2Wmem) (9)

The energy consumed by each node n1i and n2i (i = 1,…,4) to
run 1D-DWT is of about 301mJ (by component) respectively
and 75mJ to run 1Dwavelet transform algorithm of LL1 sub-
band (n3i and n4i) corresponding to a 75 % drop off.

While the method 1 reduces some computation loads dur-
ing the transform steps, the method 2 targets more significant
computation energy savings. The energy consumed in the
horizontal decomposition, is similar to the method 1. How-
ever, during the column transform the high-pass sub-band
(HH1) and (LH1) are not computed, resulting in less com-
puted operation and hence saving computational load. The
computation load saving is given by:

1

4
MN · (4A + 2S)

︸ ︷︷ ︸
LH

+ 1

4
MN · (4A + 2S)

︸ ︷︷ ︸
HH

= 1

2
MN · (4A + 2S) (13.7% compared to the LS 9/7).

In this study, we assume that the method 1 technique is
applied to the first E transform levels out of the (p− 1) total
transform levelsNasri et al. (2011). This is because the advan-
tage of skipping high-pass coefficients is more significant at
lower transform levels. Therefore, the total computational
load using this technique is represented as:

• Computational load:

CEH PF = MN (10A + 9S)

E∑

i=1

(
1

4

)i−1

+ MN (10A + 9S)

p−1∑

i=E+1

(
1

4

)i−1

= MN (10A + 9S)

E−1∑

i=0

(
1

4

)i

+ MN (10A + 9S)

p−2∑

i=E+1

(
1

4

)i

= MN (12A + 10S)

E−1∑

i=0

(
1

4

)i

+ MN (10A + 9S)

p−2∑

i=E+1

(
1

4

)i

− MN (2A + S)

E−1∑

i=0

(
1

4

)i

= 4

3
MN (12A + 10S)

[
1 − 4−(p−1)

]

− 4

3
MN (2A + S)

[
1 − 4−E

]
(10)

From Eqs. (3) and (10), we have determined the total gain
which is defined by :

Gain = 4

3
MN (12A + 10s)

[
1 − 4−(p−1)

]

− 4

3
MN (12A + 10s)

[
1 − 4−(p−1)

]

+ 4

3
MN (2A + s)

[
1 − 4−E

]

= 4

3
MN (2A + S)

[
1 − 4−E

]
(11)

On the other hand, the reduced computed operation
induces less memory access operation. Therefore, one can
save on a half of “write” operations during the column
transform compared to the method 1 corresponding to
1
2MN (Rmem + Rmem) of data-access load. Therefore, the
method 1 reduces some data-access loads during the trans-
form steps by skipping two out of every four sub-bands. The
total data-access load is given by:

• Data-access load:

CRead−LS 9/7 = CRe ad−EHPF

CWrite−EH PF = 3

2
MNWmem

E−1∑

i=0

(
1

4

)i−1

+ 2MNWmem

p−2∑

i=E

(
1

4

)i−1

= 2MNWmem(1 − 4−(p−1)) (12)

The average energy dissipated by every node using the pro-
posed methods is provided in Fig. 10.

In this case, we were interested by analyzing the impact
of the decomposition levels on the enhancement of the exe-
cution time. Figure 11 represents the execution time till five
decomposition levels.

We have considered Lena image with different sizes.
The process time vary over decomposition levels and then
reduced and become almost constant from the third decom-
position level. Thus, the most of the image energy is located
in LLi sub-band. Therefore, an additional decomposition
level is useless and will waste energy without extracting
more details. This shows that the required number of wavelet
decomposition levels in practice is typically small. Most
image-based applications consist of a large number of wire-
less sensor nodes and the source is at least eight hops away
from the sink. Thus, at least eight clusters are used. For the
reasons above, the sensor nodes located next to the sink are
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Fig. 10 Computational energy dissipated by every set of nodes

Fig. 11 Processing time for five decomposition levels

less likely to be overburdened with computational require-
ments.

4.2 Impact of the entropy encoding

Coding a 32 × 32 LL sub-band (decomposition level = 3)
with 4 magnitude bit planes, the energy dissipated is of
about 5 µJ (pass1) and 15 µJ (pass 2), whereas energy dis-
sipated by the pass3 is inconsiderable. For a 32 × 32 LL
sub-band with 5 magnitude bit planes, the average energy
dissipated to run pass1 and pass2 is estimated to be 10 µJ
each and the energy spent in pass3 is of about 2 µJ. There-
fore, decrease in magnitude bit planes leads to lower image
quality (Table 1) and less computation energy. We have also
studied the image transfer adaptability to WSNs through the
analysis of some image compression parameters. This study
has been achieved by analyzing the dependence between sys-
tem lifetime and allocated memory, and helped to select the
better compression rate as well as the better image qual-
ity.

The most important data are provided in the Table 1.
Despite, the better image quality provided by method 1, the
result of the method 2 processing is still acceptable in WSNs
applications for the highest bit plane.

5 Conclusion

In this paper, we have proposed and analyzed a new energy
efficient image compression and transmission scheme for
wireless sensor networks. This scheme is based on wavelet
image compression to reduce both computation energy by
reducing the number of arithmetic operations and memory
accesses as well as communication energy by reducing the
number of transmitted bits. This technique presents a poten-

Table 1 Measure basic elements

Method 1 Method 2

PSNR Execution time Class of service PSNR Execution time Class of service

DWT decomposition
level = 3 and Number
of bit plane = 4

20.92 Low Low image quality with
low response time

18.49 Low Low image quality with
very low response time

DWT decomposition
level = 3 and Number
of bit plane = 5

27.34 Average Average image quality
with average response
time

24.62 Low Low image quality with
average response time

DWT decomposition
level = 3 and Number
of bit plane = 6

31.16 High Average image quality
with a high response
time

26. 36 Average Average image quality
with average response
time

DWT decomposition
level = 3 and Number
of bit plane = 7

33.5 High Acceptable image
quality with a high
response time

29.68 High Still acceptable image
quality with high
response time
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tial solution to the emerging problems related to image trans-
mission in wireless applications.

This work offers much flexibility at different process lev-
els. These flexibilities are considered as dynamic parame-
ters during the system to adapt the communication process.
We have focused our study on the design and evaluation of
an efficient image compression depending on the operating
parameters at different process levels. Performance evalua-
tion shows that the proposed scheme should minimize com-
munication energy which is proportional to the number of
transmitted bits and therefore, extends the overall network
lifetime.

In future work it is reasonable to validate our approach
using a real plat-form to satisfy the real time constraints.
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